背景
鈦因其優(yōu)異的性能被廣泛應(yīng)用于航空航天、醫(yī)藥等***領(lǐng)域,由于其用量大,也被譽(yù)為僅次于鐵、鋁的“第三金屬”。然而,鈦礦的品質(zhì)直接關(guān)系到鈦金屬的經(jīng)濟(jì)價(jià)值和開采潛力。作為評(píng)估礦石質(zhì)量的主要指標(biāo),礦石品位的確定至關(guān)重要。目前,多種基于傳感器的品位分析技術(shù)在采礦業(yè)內(nèi)外蓬勃發(fā)展。盡管上述方法取得了一些進(jìn)展,但它們?cè)S多都是緩慢的,需要繁瑣的樣品制備程序,并且會(huì)使用有毒的、昂貴的化學(xué)試劑,無法滿足智慧礦山和綠色環(huán)保的理念要求。高光譜成像技術(shù)(HSI)具有“圖譜合一”的優(yōu)勢(shì),可以同時(shí)檢測(cè)目標(biāo)的光譜和空間域信息,并獲得能夠充分反映物體內(nèi)部成分和外部特征的三維數(shù)據(jù)體。
自20世紀(jì)70年代以來,Hunt基于高分辨率的光譜反射率特征方面對(duì)不同礦物、巖石和有機(jī)物的高光譜特性進(jìn)行了初步探索。近年來,Thangavelu利用高光譜測(cè)定了不同鐵礦石樣品的品位。此外,Samanta基于高光譜的輻射數(shù)據(jù),快速確定了銅礦的品位。Manna在銅礦銅品位估算中,開發(fā)了一種多層前饋神經(jīng)網(wǎng)絡(luò)模型,以建立高光譜反射率特征與銅品位之間的功能聯(lián)系。以上HSI已被用于通過評(píng)估單一礦石成分(如Fe或Cu品位)來識(shí)別礦物質(zhì),其在多組分中的應(yīng)用尚不清楚。由此可見,基于高光譜的檢測(cè)技術(shù)在礦業(yè)領(lǐng)域仍然是一項(xiàng)年輕的技術(shù),實(shí)際應(yīng)用很少。
HSI獲得的數(shù)據(jù)量很豐富,通常一個(gè)像素往往包含多個(gè)組分的混合信息,這使得多元數(shù)據(jù)分析變得非常關(guān)鍵。該分析方法能盡可能多的挖掘光譜數(shù)據(jù)中有價(jià)值的信息,直接對(duì)不同形態(tài)的復(fù)雜混合物進(jìn)行定性和定量分析。目前,化學(xué)計(jì)量學(xué)是被公認(rèn)為多元數(shù)據(jù)分析的有力工具,已經(jīng)在高光譜圖像上使用了很多年。本文著重在光譜預(yù)處理、降維分析、模型構(gòu)建等階段探索了該方法的應(yīng)用。
本研究旨在探討HSI對(duì)鈦鐵礦中鈦、鐵、釩、錳、鈷、銅、鋅、鉻、鉛等9種主要組分品位測(cè)定的應(yīng)用潛力。在光譜數(shù)據(jù)處理階段,分析了不同預(yù)處理方法對(duì)數(shù)據(jù)的影響,重點(diǎn)比較了基于投影(t-SNE)和特征選擇(iPLS-VCPA-IRIV、iPLS-VIP-IRIV)的降維技術(shù)的有效性。為了檢驗(yàn)鈦鐵礦HSI在空間域的潛力,利用顏色矩提取了礦石樣本的顏色特征,并與各組分品位間進(jìn)行Pearson相關(guān)性分析?;诠庾V和空間數(shù)據(jù),采用樹突網(wǎng)絡(luò)(DD)、偏最小二乘(PLSR)、反向傳播神經(jīng)網(wǎng)絡(luò)(BPNN)和麻雀優(yōu)化的核極限學(xué)習(xí)機(jī)(SSA-KELM)多元模型建立數(shù)據(jù)集與各組分品位之間的映射關(guān)系,并對(duì)其可靠性進(jìn)行評(píng)估,以確定*佳反演模型。最后,采用*優(yōu)組合算法對(duì)平行試樣的品位值進(jìn)行反演驗(yàn)證。
實(shí)驗(yàn)
本研究所用的鈦鐵礦原料來自中國(guó)四川(由攀枝花學(xué)院提供)。在這項(xiàng)工作中,所有樣品均在實(shí)驗(yàn)室球磨機(jī)(南大QM-3SP2行星式)中研磨,之后以200目粒徑進(jìn)行篩分。使用Innov-X Delta DS6000手持式XRF裝置測(cè)定兩份原料的鈦品位分別約為3.6780%和31.4530%。為了校準(zhǔn)模型的開發(fā)提供廣泛的鈦濃度變化范圍,用電子分析天平(Sartorius BSA224S)將兩份原料以1% (Ti)的梯度制備5份,在球磨機(jī)中分別以300轉(zhuǎn)/分鐘的速度充分混合30分鐘,再次使用XRF測(cè)***備的鈦鐵礦粉末樣本的多組分品位。礦石樣本制備完成后,通過GaiaField-N17E-HR光譜相機(jī)(江蘇雙利合譜公司)采集礦石樣本高光譜圖像。
提取光譜數(shù)據(jù)
圖1b(藍(lán)色線條)為HSI捕獲到的原始平均光譜曲線,可以明顯看到在整個(gè)光譜區(qū)域沒有特異的波峰波谷。為了找出峰谷突出的區(qū)域,分析了光譜波段之間的相關(guān)性。對(duì)于維度為(x, y, λ)的高光譜數(shù)據(jù),轉(zhuǎn)換為(z = x × y, λ),并對(duì)z進(jìn)行相關(guān)性分析,結(jié)果如a所示。圖中顯示紅色區(qū)域的波段在整個(gè)波段中占比94.34%,其余顏色區(qū)域總共占比5.66%。為了***限度地保留 “純凈數(shù)據(jù)”,防止其它顏色區(qū)域數(shù)據(jù)的干擾,通過查詢顏色欄數(shù)據(jù)并結(jié)合波段得知紅色與其余顏色區(qū)域的相關(guān)性分界點(diǎn)為0.8(波段:483)。隨后,將相關(guān)性小于0.8的30個(gè)波段從數(shù)據(jù)分析中剔除,從而***了1685.47-1735.34 nm的光譜區(qū)域。得到的光譜曲線如圖1b(紅線)所示。該過程獲得的光譜數(shù)據(jù)(150×483)用于后續(xù)的模型建立和分析。
圖1 光譜曲線分析
結(jié)論
通過XRF檢測(cè)出了鈦鐵礦中品位較高的9種金屬元素,根據(jù)其品位高低對(duì)樣本進(jìn)行分組。其中,1%及以上為主要品位(Ti, Fe),0.02-1%為次要品位(V, Mn, Co, Cu),0.02%及以下為微量品位(Zn, Zr, Pb)。鈦鐵礦中各組分品位的統(tǒng)計(jì)分布如表1所示,可以清晰看出,不同組分的品位有明顯的差異,這對(duì)回歸模型的建立至關(guān)重要。
表1 鈦鐵礦樣品品位測(cè)定的統(tǒng)計(jì)分析
Ilmenite components |
Range (%) |
Mean (%) |
SD (%) |
|
Major grades |
Ti |
3.3700-31.4530 |
16.2600 |
8.4938 |
Fe |
9.0620-32.2490 |
19.3504 |
6.6826 |
|
Minor grades |
V |
0.0700-0.3600 |
0.1931 |
0.0706 |
Mn |
0.1220-0.6070 |
0.3444 |
0.1413 |
|
Co |
0.0690-0.2175 |
0.1491 |
0.0422 |
|
Cu |
0.0092-0.0450 |
0.0199 |
0.0071 |
|
Trace grades |
Zn |
0.0071-0.0220 |
0.0140 |
0.0039 |
Zr |
0.0066-0.0168 |
0.0118 |
0.0028 |
|
Pb |
0.0018-0.0220 |
0.0086 |
0.0040 |
鈦鐵礦樣本的光譜反射率值在0.03 - 0.27之間,證實(shí)粉狀鈦鐵礦的整體反射率較低,并隨品位的增加而降低。圖1b顯示在NIR區(qū)域,該鈦鐵礦的光譜特征分別在940nm、1020nm和1300~1650nm處出現(xiàn)了波谷。具體地,光譜反射率值在940 nm處達(dá)到谷值,隨后急劇下降,這主要?dú)w因于O-Ti-O的拉伸和變形。該鈦鐵礦較寬的吸收波段主要位于1300 ~ 1650 nm,Izawa指出這是由八面體配位的亞鐵在此附近產(chǎn)生晶體場(chǎng)躍遷分裂而引起的。
采用SG、MSC、CR、SD、MSC+SG等5種預(yù)處理方法對(duì)原始光譜數(shù)據(jù)進(jìn)行處理?;贒D模型對(duì)比原始光譜數(shù)據(jù),探索出HSI光譜數(shù)據(jù)的***預(yù)處理方法,結(jié)果如表2所示。預(yù)測(cè)集中,與原始數(shù)據(jù)相比,MSC+SG方法下的各指標(biāo)R2P提高了5.88%,RMSEP降低了34.39%,RPD和RPIQ分別提高了28.86%和38.93%。
表2 DD模型下不同預(yù)處理方法的結(jié)果
Pretreatment methods |
Calibration set |
Prediction set |
||||
R2C |
RMSEC |
R2P |
RMSEP |
RPD |
RPIQ |
|
RAW |
0.9123 |
0.5390 |
0.9127 |
0.5513 |
3.3845 |
3.5976 |
SG |
0.9047 |
0.5959 |
0.9079 |
0.5789 |
3.2951 |
3.1422 |
MSC |
0.9488 |
0.4072 |
0.9619 |
0.3778 |
5.1232 |
5.0226 |
CR |
0.8149 |
0.8352 |
0.8285 |
0.7091 |
2.4147 |
3.5038 |
SD |
0.8393 |
0.7543 |
0.8978 |
0.5119 |
3.1281 |
4.4302 |
MSC+SG |
0.9623 |
0.3501 |
0.9687 |
0.3137 |
5.6523 |
6.6036 |
為直觀地看到各預(yù)處理方法對(duì)數(shù)據(jù)的改變,繪制了HSI采集的鈦鐵礦樣本三維原始光譜如圖2a所示,圖2b-d所示三維光譜為CR、SD、MSC+SG預(yù)處理的結(jié)果。SG預(yù)處理后的光譜反射率曲線趨勢(shì)與鈦鐵礦原始光譜反射率曲線相似。MSC和MSC+SG預(yù)處理的光譜變化不大,但有效地***了光譜散射,突出了光譜峰谷區(qū)域。相比之下,CR和SD預(yù)處理后的光譜變化明顯,兩種方法的光譜反射率范圍差異過大,導(dǎo)致原始數(shù)據(jù)的一些特征丟失。然而,***MSC+SG預(yù)處理圖譜顯示,光譜特征區(qū)域顯著增強(qiáng),反射率數(shù)據(jù)得以明顯集中,有效增強(qiáng)了光譜特征信息。因此,MSC+SG可以作為一種有效的光譜預(yù)處理方法來預(yù)測(cè)鈦鐵礦多組分的品位信息。
圖2 HSI采集鈦鐵礦樣品的三維光譜:(a) RAW光譜;(b) CR預(yù)處理后的光譜;(c) SD預(yù)處理后的光譜;(d) MSC + SG預(yù)處理后的光譜。
采用t-SNE、iPLS-VCPA-IRIV和iPLS-VIP-IRIV三種不同的降維算法對(duì)近紅外光譜數(shù)據(jù)進(jìn)行不同程度地約簡(jiǎn)。圖3為不同降維算法的數(shù)據(jù)分布情況。t-SNE改變了原始數(shù)據(jù)集,經(jīng)該方法輸出的高維(483維)原始光譜數(shù)據(jù)特征映射到了三維平面之上。特征選擇方法iPLS-VCPA-IRIV和iPLS-VIP-IRIV三步混合策略算法提取的波長(zhǎng)數(shù)分別為28和38,比原始維度相應(yīng)減少了94.19 %和92.12 %??偟膩碚f,三種降維算法有效地***了原始光譜矩陣中的冗余信息,為減少計(jì)算時(shí)間和確保精度奠定了基礎(chǔ)。
圖3 不同降維方法下的數(shù)據(jù)分布:(a) t-SNE;(b) iPLS-VCPA-IRIV;(c) iPLS-VIP-IRIV。
表3為鈦鐵礦樣本中各組分的VIF檢驗(yàn)分?jǐn)?shù)。在相關(guān)程度上,L代表相關(guān)度低,H代表相關(guān)度高。對(duì)于每個(gè)變量,VIF得分均不超過2,說明各變量之間的共線性現(xiàn)象不突出,相關(guān)程度符合研究要求。因此,可以采用數(shù)據(jù)預(yù)處理,降維等方法對(duì)各組分品位數(shù)據(jù)進(jìn)行處理,并參與模型預(yù)測(cè)。
表3 鈦鐵礦樣品中各組分的VIF指數(shù)
Components |
Ti |
Fe |
V |
Mn |
Co |
Cu |
Zn |
Zr |
Pb |
VIF |
1.3835 |
1.4561 |
0.0287 |
0.2962 |
0.1615 |
0.0230 |
0.0358 |
0.0699 |
0.0179 |
Correlation (L/H) |
L |
L |
L |
L |
L |
L |
L |
L |
L |
提取礦石樣本的顏色特征是否可以用于構(gòu)建品位預(yù)測(cè)模型,還有待進(jìn)一步驗(yàn)證?;阝佽F礦多組分品位(平均品位)與顏色特征參數(shù)進(jìn)行Pearson相關(guān)性分析(圖4)。從圖中可以看出,除S顏色通道的特征參數(shù)與多組分品位存在弱相關(guān)(R < 0.3)外,其余顏色特征參數(shù)對(duì)于品位預(yù)測(cè)模型都是合理的。造成這種現(xiàn)象的原因是,鈦鐵礦本身是一種不透明礦物,而HSI采集到的圖像過于單一,整體顏色偏暗。
圖4 品位和顏色特征參數(shù)的皮爾遜相關(guān)性分析
多元回歸模型DD、PLSR和SSA-KELM可能對(duì)兩個(gè)維度中某一特定數(shù)據(jù)集的表現(xiàn)好,但基于多組分品位模型穩(wěn)定性的需求,BPNN才是*佳的模型選擇。圖5為基于BPNN兩個(gè)效果*好的光譜和圖像數(shù)據(jù)結(jié)果,可以看出,兩個(gè)數(shù)據(jù)的指標(biāo)變化差異不大,證實(shí)了BPNN模型即使在小樣本量下也具有很強(qiáng)的泛化性能和魯棒性。綜合評(píng)價(jià)表明,BPNN對(duì)兩組數(shù)據(jù)集的預(yù)測(cè)都是成功的,但利用圖像數(shù)據(jù)預(yù)測(cè)鈦鐵礦多組分品位的可靠性略低于利用特征選擇的光譜數(shù)據(jù)。
圖5 基于光譜數(shù)據(jù)和圖像數(shù)據(jù)的*優(yōu)模型結(jié)果
從iPLS-VCPA-IRIV特征選擇的擬合光譜數(shù)據(jù)圖(圖6)可以看出,在校正集中,鈦鐵礦多組分品位都均勻準(zhǔn)確地分布在理想曲線上。然而,對(duì)于預(yù)測(cè)集來說,明顯可以看出來的是,除擬合良好的主要品位(Ti、Fe)和次要品位(V、Mn、Co、Cu)外,微量品位(Zn、Zr、Pb)的擬合似乎并不令人滿意。因此,在下一步工作中,可以對(duì)少樣本量下礦石內(nèi)部微量品位的變化進(jìn)行更深入的研究。
圖6 基于iPLS-VCPA-IRIV光譜數(shù)據(jù)的BPNN模型擬合效果
本研究從光譜和空間維度出發(fā),探討了HSI與化學(xué)計(jì)量學(xué)相結(jié)合預(yù)測(cè)鈦鐵礦多組分品位的能力。
參考文獻(xiàn):Yi X, Chen M, Guo W, et al. Multicomponent hyperspectral grade evaluation of ilmenite using spectral-spatial joint features[J]. Analytical Methods, 2023, 15(38): 5050-5062. https://doi.org/10.1039/d3ay01102j
地址:無錫市梁溪區(qū)南湖大道飛宏路58-1-108
電話:13810664973
郵箱:info@dualix.com.cn
地址:北京市海淀區(qū)中關(guān)村大街19號(hào)
電話:13810664973
郵箱:info@dualix.com.cn
地址:陜西省西安市高新區(qū)科技一路40號(hào)盛方科技園B座三層?xùn)|區(qū)
電話:13810664973
郵箱:info@dualix.com.cn
地址:成都市青羊區(qū)順城大街206號(hào)四川國(guó)際大廈七樓G座
電話:13810664973
郵箱:info@dualix.com.cn